

TU4C-3

Waveguide Multimode Directional Coupler for Harvesting Harmonic Power from the Output of Traveling-Wave Tube Amplifiers

Rainee N. Simons and Edwin G. Wintucky
NASA Glenn Research Center
Cleveland, OH 44135, USA

Email: Rainee.N.Simons@nasa.gov

June 6, 2017

Outline

- Introduction Motivation
- Benefits & Challenges
- Waveguide Multimode Directional Coupler
 - -Coupler Design
 - Coupler Fabrication
 - Coupler Characterization
- Conclusions
- Acknowledgement

Introduction – Motivation

- Growing user community
 - Congestion in the traditional Ku, K, and Ka frequency bands designated for space-to-ground data communications
- Next available bands above Ka-band are the Q-band (37-42 GHz) and E-band (71-76 GHz)

Benefits of Migrating to Higher Frequencies

- Allocated bandwidth at Q-band & E-band is in excess of 4 GHz, which can enhance throughput by 10X or higher
 - Competitive with terrestrial fiber optic & wireless service in terms of cost per transmitted bit
- Narrower beam width & smaller spot size
- Greater frequency reuse & spectral efficiency

Challenges

- Lack of rigorous studies to understand atmospheric effects on radio wave propagation at Q-band & E-band
 - These studies are essential for the design of a robust system for deployment in space

Challenges

(continued)

- A wide band beacon transmitter has to be deployed on a satellite
 - Ground receivers have to be dispersed over climate zones of interest
 - Statistical data on rain attenuation, fading, change in refractive index, scintillation, depolarization effects, etc., have to be acquired for a period of 3 to 5 years

High Power Amplifier Harmonics

TWTAs on board satellites for data transmission operate with constant envelope type waveform (for e.g. QPSK) and at saturation for peak efficiency

Waveguide Multimode Directional Coupler (MDC)

Fabricated Ku-Band/Ka-Band Waveguide MDC

Test Circuit for Measurement of Power at Fundamental (f₀) & Second Harmonic (2f₀)

Experimental Setup - Ku-Band/Ka-Band MDC Tests

MDC at Output Port of Ku-Band TWTA

Connecting Minds, Exchanging leas.

Measured TWT Fundamental (f₀) Saturated

Output Power

Measured Second Harmonic (2f₀) Power at Port 4 of MDC

TU4C-3

Measured f₀ Power at the MDC Port 4 & Port 2

Fabricated Ka-Band/E-Band Waveguide MDC

Test Circuit for Measurement of Power at Fundamental (f₀) & Second Harmonic (2f₀)

Experimental Setup - Ku-Band/Ka-Band MDC Tests

Measured TWT Fundamental (f₀) Saturated Output Power

Measured Second Harmonic (2f₀) Power at Port 4 of MDC With & Without the

Conclusions

- Design, fabrication and test results are presented for a Ku-Band/Ka-Band & Ka-Band/E-Band MDCs
- The MDC can be connected directly to the output port of a TWTA with negligible loss of fundamental power – an advantage over harmonic filters and diplexers
- Test results demonstrate sufficient power in the 2nd harmonic for potential space borne beacon source for atmospheric studies

